The Cambridge Bitcoin Electricity Consumption Index (CBECI) provides an up-to-date estimate of the Bitcoin network’s daily electricity load. The underlying techno-economic model is based on a bottom-up approach initially developed by
Marc Bevand in 2017 that uses the profitability threshold of different types of mining equipment as the starting point.
Given that the exact electricity consumption cannot be determined, the CBECI provides a hypothetical range consisting of a hypothetical
lower bound (floor) and a hypothetical
upper bound (ceiling) estimate. Within the boundaries of this range, a
best-guess estimate is calculated to provide a more realistic figure that approximates Bitcoin’s real electricity consumption.
The lower bound estimate corresponds to the theoretical minimum total electricity expenditure based on the best-case assumption that all miners always use the most energy-efficient equipment available on the market. The upper bound estimate specifies the theoretical maximum total electricity expenditure based on the worst-case assumption that all miners always use the least energy-efficient hardware available on the market, as long as running the equipment is still profitable in electricity terms. The best-guess estimate is based on the more realistic assumption that miners use a basket of profitable hardware rather than a single model.